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Abstract

Accurate identification of body regions in CT scans is critical for clinical and
research workflows, yet DICOM metadata is often incomplete or unreliable. We
propose a fast and lightweight method for automatic body region detection using
2D projections of CT volumes and a 2D U-Net segmentation model. Our method,
trained on both public and proprietary anatomically labeled datasets, achieves high
accuracy (median DSC of 0.97) and reduces inference time by more than 600x
compared to full 3D segmentation. This enables efficient, scalable image screening
and improves anatomical metadata consistency in large imaging archives.

1 Introduction

An essential step in many clinical workflows involving medical imaging databases is the accurate
retrieval of relevant imaging data corresponding to indication-specific target anatomical regions. The
Digital Imaging and Communications in Medicine (DICOM) standard defines a series of optional
metadata tags, such as Body Part Examined and Anatomic Region Sequence, which can support
the retrieval process. Additionally, datasets often include tabular metadata that may provide com-
plementary anatomical information. However, this information is often inconsistent, ambiguous,
incorrect, or removed entirely during de-identification [5, 7, 3]. Such issues significantly inhibit
automated retrieval of relevant medical imaging data in both clinical and research settings. As a
result, developing robust automated methods for extracting reliable labels has become increasingly
important for effective image organization and data analysis.

Convolutional Neural Networks (CNNs) have demonstrated strong performance in classifying anatom-
ical structures and image properties in CT scans [7, 8, 9], though they are less effective when multiple
targets must be handled or precise localization is required. Grid-based classification, such as the
method proposed by Hammami et al. [4], enables simultaneous localization and classification but
often relies on slice-wise analysis and complex logic to make decisions at the volume level. Semantic
segmentation methods, particularly those based on U-Net, have significantly advanced multi-organ
segmentation [2, 6] and build the foundation for frameworks like nnDetection [1] and TotalSegmen-
tator [11]. Nonetheless, the substantial computational time and resources required for full-volume
segmentation limit their practicality for large-scale image screening.

To address these limitations, we propose a lightweight method for fast and accurate detection of body
regions in CT scans. Our approach uses 2D projection images instead of full volumetric data, which
significantly reduces model complexity, computation time and resource usage, while still achieving
high segmentation accuracy suitable for reliably inferring and identifying imaged body regions.
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Figure 1: Our proposed approach, highlighting the generation of training data for body region
detection. The CT volume I3p and corresponding annotations Lsp are projected to 2D, which are
then used to train a 2D U-Net model. During inference, I3p — I»p is computed and fed into the
trained model to obtain Lyeq, which delineates the anatomical regions of interest.

2 Method and Preliminary Results

Our proposed method is illustrated in Figure 1. Starting with an input CT volume I3p and the target
annotation of body regions L;p, we reduce the dimensionality of I3 — I,p by computing the
Maximum Intensity Projection (MIP) on the coronal plane. This provides a frontal view that clearly
reveals structures extending along the body’s length, making it the preferred choice for our detection
task. Similarly, we project the ground-truth annotations Lsp — L,p on the coronal plane, resulting
in a paired 2D dataset consisting of MIP images and ground-truth labels for different anatomical
regions.This dataset is then used to train a 2D-UNet model using the nnUNet framework [6]. To
enhance model generalization and extend our training dataset, we apply additional data augmentations
prior to the 2D projection. First, we rotate I3p around the longitudinal axis to make the model robust
to varying patient orientations. These rotations are performed within the range of [—40°, +40°] in
20° increments. We also crop the volumes along the Anterior-Posterior (AP) axis to simulate partial
acquisitions, performed at 66% of both the AP and PA axes. In addition to the augmentations applied
prior to the 2D projection of I53p, the DAS trainer within the nnU-Net framework is configured to
apply advanced augmentations to I;p and Lyp during model training.

Our experiments were conducted using a combination of 1,221 subjects from the TotalSegmentator
dataset [11] and a smaller in-house proprietary dataset of 66 subjects. Additional data was required
due to the limited number of forearm and lower leg images in the TotalSegmentator dataset, which also
lacked corresponding ground-truth annotations. To address this, we used the method MOOSE [10] to
generate pseudo-labels for the forearms and lower legs in the TotalSegmentator dataset, as well as for
31 lower leg scans from our in-house dataset. The remaining 35 forearm CT scans in our in-house
dataset were manually annotated. We categorized the body into six regions — head, thorax, abdomen,
pelvis, arms, and legs — by grouping the relevant anatomical structures. Importantly, we limited
our approach exclusively to bone structures, which are clearly visible in MIP images. The abdomen
was identified by the lumbar vertebrae; the thorax included all cervical and thoracic vertebrae along
with chest and shoulder bones; and the pelvis comprised the sacrum and hip bones. The arms and
legs were defined as starting from the humerus and femur, respectively. In overlap areas, labels were
assigned based on the following priority order, with later regions overriding earlier ones: thorax,
head, pelvis, abdomen, arms, and legs.

Training and evaluation were performed on an NVIDIA RTX 4090 GPU using five-fold cross-
validation. The median Dice Similarity Coefficient (DSC) across all labels was 0.97. A detailed
breakdown of the performance for each individual body region is presented in Table 1 and Figure 2.
Figure 3 presents examples of outliers with low Dice scores. Inference averaged 0.12 seconds per
image, over 600 times faster than the 75-second average required by the 3D TotalSegmentator model
on the same system.

We further evaluated the accuracy of the detected body regions from segmentation against the available
metadata. The TotalSegmentator dataset provides a metadata table, where the columns study-type
and pathology-location can be used to infer a set of body regions, denoted as Rp. Similarly, for
our method, we derive p from the predicted segmentation Lp.q. To filter out small fragments, we
include only regions that cover an area of at least 74 = 9cm?(3 x 3cm).
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Table 1: Median and IQR of the DSC metric across the Figure 2: DSC value distribution by
full dataset and the two subdatasets. body region. Outliers mainly reflect
fragmented structures (see Figure 3).

Figure 3: Examples of discrepancies between ground-truth (top) and predicted (bottom) segmentations
that lead to low DSC scores (middle). Most errors are due to small ground-truth fragments, often
near image boundaries, that the model fails to detect. These fragments disproportionately lower
the DSC score, as shown in (a) to (d). Many fragments originate from minor annotation errors in
TotalSegmentator, such as a sternum fragment mislabeled as thorax in (c). In some cases, ground-truth
labels are missing entirely, like the lumbar vertebrae in (e). Only few cases reflect true segmentation
challenges, such as the overlapping hands and pelvis in (f), which are underrepresented in the dataset.

Source  Available Inferred Contained Equal

study-type 99.6% 91.5% 82.1% 11.2%
pathology-location 65.0% 51.4% 48.2% 4.8%
Ours 100.0%  100.0% 99.0% 98.0%

Table 2: Evaluation of the accuracy of inferred body regions Rp using two metadata sources
compared to our method. We report the percentage of cases where metadata is present (Available)
and successfully linked to body regions (Inferred). Additionally, we evaluate whether the inferred
regions are contained within (Contained) or exactly match (Equal) the ground-truth body regions R7.

Ground-truth body regions R are obtained in the same manner from the projected annotations Lyp.
Table 2 summarizes the percentage of cases in which metadata is available and can be linked to
body regions (Rp # ), and where the inferred regions are either contained within (Rp C Rr) or
exactly match (Rp = Ry) the ground-truth regions. The study-type was available in nearly all cases,
however, 8.1% of entries contained ambiguous values, such as intervention. Pathology-location,
which was already available in only 65% of cases, included the ambiguous values unclear or bones
in 21% of those. Among the available data, the inferred labels Rp were incorrect in 10.3% and
6.1% of cases for study-type and pathology-location, respectively, as they did not match any values
in R7. A complete match was achieved in only 11.2% and 4.8% of cases, respectively. Figure 4
shows cases where the body region has been incorrectly inferred (Rp € Rr) based on the study-type



(top), pathology-location (middle), or our method (bottom). We found that the study-type attribute
was often labeled too broadly, including multiple regions not present in the image. In contrast, the
pathology-location attribute was frequently outright incorrect. For our model, only one genuine error
was observed: a rib was misclassified as an arm (bottom right image). The remaining cases did
contain the target label, although only at levels slightly below the minimum area threshold 74.
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Figure 4: Instances of incorrectly inferred regions (Rp ¢ Ry ) are shown for the study-type (top),
pathology-location (middle) and our method (bottom). Ground-truth segmentations are labeled with
the original metadata or segmented body regions, with mismatched regions highlighted in red.

3 Discussion and Conclusion

To enable fast and accurate body region detection in CT scans, our method addresses the high compu-
tational demands of 3D segmentation. By using coronal projections to reduce image dimensionality,
we achieve a substantial reduction in inference time. With an average inference time of just 0.1
seconds per image, our approach is well suited for large-scale screening of medical databases. For
the TotalSegmentator dataset, we demonstrated that our method predicted body regions far more
reliably than the provided metadata. Our approach offers the added benefit of producing segmented
regions, which facilitates result visualization and quantification of region sizes, thereby enhancing
explainability and enabling more advanced tasks beyond region detection.

The selection and grouping of anatomical regions were tailored to our specific use case. However,
segmenting finer-grained structures may further improve model accuracy and generalizability by
enabling the model to distinguish a broader range of anatomical features. In this case, grouping
into broader body regions could be deferred to a postprocessing step. Expanding segmentation to
include non-skeletal structures, such as muscles and organs, may enhance robustness, particularly in
the abdominal region where the model is currently limited to the lumbar vertebrae and could benefit
from incorporating larger structures like the colon. Soft-tissue structures may also benefit from alter-
native projection techniques, such as Average Intensity Projection (AIP) or Digitally Reconstructed
Radiographs (DRR), which could serve as additional input channels. Future improvements should
consider multi-class training to accommodate overlapping structures, allowing the model to assign
multiple anatomical labels within the same spatial region. The impact of these extensions should be
carefully evaluated, as they also increase model complexity.

We are currently evaluating these proposed extensions to develop a 2D counterpart to TotalSegmenta-
tor, with body region detection integrated as a secondary processing step. As part of this effort, we
also plan to release models trained exclusively on public datasets.
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