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Abstract: 52 

Despite the advances in automated medical image segmentation, AI models still underperform in various clinical 53 

settings, challenging real-world integration. In this multicenter evaluation, we analyzed 20 state-of-the-art 54 

mandibular segmentation models across 19,218 segmentations of 1,000 clinically resampled CT/CBCT scans. 55 

We show that segmentation accuracy varies by up to 25% depending on socio-technical factors such as voxel 56 

size, bone orientation, and patient conditions such as osteosynthesis or pathology. Higher sharpness, isotropic 57 

smaller voxels, and neutral orientation significantly improved results, while metallic osteosynthesis and 58 

anatomical complexity led to significant degradation. Our findings challenge the common view of AI models as 59 

"plug-and-play" tools and suggest evidence-based optimization recommendations for both clinicians and 60 

developers. This will in turn boost the integration of AI segmentation tools in routine healthcare. 61 

Introduction 62 

With the ongoing digital transformation of healthcare, segmentation-based acquisition of anatomical and 63 

pathological structures has become an essential step in both clinical practice and research. Applications scenarios 64 

span over a wide field including diagnostic, image-guided radiotherapy and virtual surgical planning1–3. 65 

However, manual segmentation is still labor intensive and time-consuming. To address this issue, a large number 66 

of automatic segmentation methods for different structures have emerged in the last decades, and among them 67 

artificial intelligence (AI) models utilizing deep learning methods are the most promising ones4–6. In the 68 

segmentation of mandible for example, AI models have progressed beyond research settings and have begun to 69 

translate to clinical use as certified medical software in clinical practice7–10. However, despite decades of 70 

algorithmic advancements, there remains no standardized clinical integration protocol for AI segmentation 71 

models, leaving clinical integration a major challenge5,11,12. 72 

This may be due to the technocentric paradigm that has been in place for decades of comparing and 73 

developing algorithms in different challenges to push the limits of performance and ultimately surpass human 74 

capabilities13. While this technocentric perspective has brought us powerful models and refreshed leaderboards, 75 

it often overlooks the complex socio-technical systems in which AI models are applied. In terms of clinicians, 76 

recent work shows that their adoption of AI generated results hinge on transparency, robustness, and real-world 77 

applicability—not benchmark metrics alone14,15. Additionally, in real-world situations, medical imaging data is 78 

often acquired prospectively based on specific clinical needs, including a wide range of possible imaging 79 

protocols as well as different patient factors. In this respect, a shift in perspective from a techno-centric 80 

preoccupation to a socio-technical perspective16, which explicitly considers clinical contexts such as diverse 81 

imaging protocols, patient demographics, and practical workflow integration, would be highly beneficial in 82 

facilitating the effective translation of AI segmentation models into clinical routines and research settings. 83 

Consequently, we need to understand how socio-technical factors affect the performance of AI segmentation 84 

models in general. A previous study found that factors such as the imaging modalities (e.g., CT and CBCT), 85 

scanning devices, and the reconstruction protocols (e.g., voxel size, thickness, convolutional kernels) all may 86 

impact segmentation outcomes17. While some studies have begun to explore these factors, previous studies have 87 

either focused on limited factors or used only a single AI model, leaving a comprehensive understanding of these 88 

interactions largely unveiled18,19.  89 
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To address this issue, instead of simply comparing models’ performance, we evaluated the impact of socio-90 

technical factors on the overall performance of multiple AI models in this study. For this purpose, we chose the 91 

mandible, which is morphologically complex and a representative in bone segmentation, as the segmentation 92 

target and created a benchmark dataset that balanced both patient and imaging features. Notably, our study 93 

recruited the largest number of AI models for mandible segmentation evaluated to date. By systematically 94 

resampling the original data, we could experimentally control the impact of different factors as they would be 95 

controllable during medical image acquisition. We then evaluated the segmentation results to explore the general 96 

impact of imaging, patient, and anatomical region factors on the model performance. Based on the results, we 97 

further suggest best practice recommendations for clinicians in applying AI segmentation models. In addition, 98 

we put forward requirements for AI developers, who are expected to create next-generation models that are 99 

informed by the clinical challenges encountered in AI models. Our study provides a reliable evidence base for 100 

future clinical integration guidelines of AI segmentation models, helping bridge the gap between technical 101 

performance and practical deployment. 102 

Methods 103 

In this multicenter study we evaluated state-of-the-art AI models from 20 different centers and companies 104 

around the world (Table 1). The study protocol was registered prospectively in the German clinical trial registry 105 

under registration ID DRKS00032736. All technical details can be found in this study protocol. The ethics 106 

application of the study was approved by the ethics committee at RWTH Aachen University (No.23-272). No 107 

informed consent was needed due to the use of anonymized retrospective patient data.  108 

Dataset Preparation 109 

To build a balanced benchmark dataset in terms of patient-related features, we selected 50 CT and 50 CBCT 110 

scans from 100 patients from a single center. In terms of patient characteristics, the sex ratio is 1:1 and the 111 

average age of patients was 48.47 years (range 19 – 91 years) (Supplementary Table 1). All selected scans were 112 

de-identified by cropping out the region above the inferior border of the orbital rim. Cases were excluded if 113 

cropping was not possible without affecting the condyle region. We systematically resampled the original 100 114 

selected cases to create an additional 900 volumes, for a total of 1,000 volumes. This method, instead of 115 

selecting 1,000 cases directly, gave us full control over the voxel size, slice thickness, sharpness, noise and 116 

rotation of the mandible.  117 

To obtain a balanced dataset, the features of the original CT/CBCT volumes were profiled prior to 118 

resampling. These features were quantified and measured in five aspects: a) voxel size (XY); b) slice thickness; c) 119 

sharpness; d) noise; e) rotation of the mandible. Where a) and b) were extracted from DICOM tags, c) was 120 

quantified via a Sobel-based edge intensity, and d) was derived from the standard deviation of the median-filter 121 

difference. Mandible rotations e) were calculated using bone landmarks. Based on the measurements, we chose 122 

five types of resampling methods namely: a) increase the slice thickness; b) expand the voxel size (XY); c) 123 

sharpening / smoothing; d) Gaussian-noise / denoise; e) rotation in axial, coronal and sagittal plane. A set of 124 

factors were tested and used in resampling these features respectively (Supplementary Table 4). By adjusting 125 

these factors, we have managed to approximate the distributions of features on the resampled dataset to the 126 

reference distribution from public datasets 20–22 or normal distribution. A total of 3,727,360 resampling 127 

combinations of imaging features were generated, from which 900 were randomly selected and resampled 128 
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volumes were generated accordingly (Supplementary Figure 1). These down-sampled volumes, together with the 129 

initial 100 scans, resulted in a balanced final dataset of 1,000 volumes. The final distribution of patient and 130 

imaging features can be found in Supplementary Figure 1.  131 

Ground Truths  132 

Mandible segmentations of the original scans were performed by two surgeons experienced in segmentation 133 

(KX and LG) independently in different software, KX in Mimics (Version 21.0) and LG in 3D Slicer (Version 134 

5.6.2). The quality of segmentations was checked and approved by a third surgeon (BP). The principle of the 135 

segmentation was to preserve the anatomical bone structure of the mandible. In this case, all teeth, including 136 

dental implants, crowns and bridges, were segmented along with the mandible. Osteosynthesis materials (e.g. 137 

reconstruction plates, fixation screws/plates) were excluded in the segmentation, except for the part inside the 138 

mandible. The cancellous bone and the mandibular nerve canal were filled in so that the final segmentation result 139 

is free of internal cavities. Since resampling is not changing the anatomy of the bone, we applied the same 140 

resampling protocol in voxel scaling and rotation to the original ground truths to obtain corresponding 141 

segmentation results for the resampled 900 cases.  142 

Model Recruitment 143 

The segmentation models included in this study need to meet the following criteria: a) deep learning based 144 

fully automatic segmentation tool; b) developed within the last five years; c) the output of the model is the mesh 145 

model or label map of the whole mandible; d) already trained and ready to use. Based on the literature study of a 146 

systematic review, we listed a group of models available in publications and searched further in online databases 147 

for other models published after the systematic review5. We contacted 35 corresponding authors and ten of them 148 

agreed to participate in the study. In addition, ten companies that offer mandible segmentation tools as a service 149 

were contacted. Eight of them joined our study. Furthermore, we have searched public repositories for available 150 

models and applied two trained models. With a data transfer agreement (DTA), the final dataset was shared with 151 

the collaborators, and segmentation results were returned to RWTH Aachen for evaluation. If a DTA was not 152 

feasible or the model was publicly available, inference was conducted locally at RWTH Aachen University. 153 

Evaluation 154 

To further evaluate the segmentation quality in different anatomical regions of the mandible, we delineated 155 

nine ROIs by K.X and controlled by B.P.: condyle L/R, inferior alveolar nerve (IAN) entrance L/R, IAN exits 156 

L/R, dentition, inferior border. The last ROI, mandible body, was defined as the rest of mandible excluding the 157 

ROIs. All of the above ROIs were created based on reference points manually labelled on the volume by KX. 158 

Segmentation results were compared to both manual ground truths and the mean value was taken as the final 159 

result. We chose four metrics for evaluation: DSC, NSD, HD95, and MASD, and all metrics were calculated 160 

using the python package from Nikolov et al.23,24 on the whole mandible and on all ROIs respectively. No 161 

evaluations in the dentition region were conducted if the AI model cannot segment the teeth. All evaluations 162 

were conducted anonymously to secure the interests of all researchers and companies. 163 

Statistical analysis 164 

The statistical analysis was conducted with the R programming language (Version 4.4.2). For descriptive 165 

statistics on data with non-normal distribution, we applied the non-parametric Mann-Whitney U test to evaluate 166 

statistical significance, followed by a bootstrap procedure with 5000 replicates to obtain the 95% CI for the 167 
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median difference. Factors listed in the above section were set as fixed effect in the LMM while the difference of 168 

the AI models was considered as random effect. We checked the collinearity of selected fixed effects and found 169 

that sharpness and noise were highly corelated with a Variable Inflation Factor (VIF) of 10.943. In this case, 170 

noise was removed from the list of factors. We scaled the factors and tested multiple combinations of settings 171 

and selected one optimal LMM for each ROI and the whole mandible on each metric. LMM results on DSC are 172 

displayed in Figure 7. LMMs on other metrics and details of fitted models are described in Supplementary 173 

Figure 2, 3 and 4. We performed further analyses of the models described above to establish the evidence base 174 

for our recommendations. 175 

Results 176 

Recruited AI Models and overall segmentation results 177 

A total of 20 commercial and research AI models for mandible segmentation from different countries across 178 

the world were recruited in this study, with the workflow shown in Figure 1. All models were developed over the 179 

last 5 years and listed in Table 1. Due to privacy reasons of the participating companies, evaluations of these 180 

models were anonymized. The evaluation was performed on ground truths of two investigators with an interrater 181 

correlation of 95.7% in Dice Similarity Coefficient (DSC, i.e. overlap measurement). From the 1000 volumes to 182 

be segmented, on average 942 volumes were successfully segmented and 19,218 segmentations were evaluated. 183 

The model designations are listed in descending order according to the number of volumes with DSC greater 184 

than 90% in their segmentation results (Fig. 2a). Only one model (S) was unable to segment any CBCT volume. 185 

Table 2 presents the overall performance of the models, including the CT and CBCT subsets. The metrics 186 

used were: DSC as primary metric, Normalized Surface Dice (NSD, i.e. boundary agreement), 95 percentile 187 

Hausdorff Distance (HD95, i.e. worst-case boundary error), and Mean Average Surface Distance (MASD, i.e. 188 

average boundary deviation)25. The mean values of DSC and NSD for all models are both 81.7%. While the 189 

mean values of HD95 and MASD are 14.89 mm and 2.73 mm, respectively. Model A demonstrates the best 190 

performance across almost all metrics. We explored the effect of the type of training data on the segmentation 191 

results (Fig. 2b, c). It is interesting to note that the models trained with only CBCT data show better results than 192 

the models trained with only CT data (Mann-Whitney U test, p < 0.001), and the median difference was 193 

estimated as 5.10% with a 95% bootstrap confidence interval (CI) of [4.71%, 5.51%]. Yet the difference is not 194 

significant between CBCT and combination of both data modalities (Mann-Whitney U test, p = 0.733). 195 

Commercial models demonstrate better performance compared to research models (Mann-Whitney U test, p < 196 

0.001), with a median difference of 1.03% [95% CI: 0.75%, 1.34%]. Regarding the amount of training data, the 197 

models trained on a moderate number of scans (150–300 cases) exhibited the optimal segmentation performance 198 

among all groups (p < 0.001, Kruskal-Wallis test; Fig. 2d,e). The median DSC difference between the medium 199 

and low groups was 2.70% [95% CI: 2.39%, 2.97%], and between the medium and high groups was 2.87% [95% 200 

CI: 2.55%, 3.16%]. 201 

Imaging factors 202 

Figure 3 shows the effect of imaging factors on segmentation performance of AI models. Higher sharpness 203 

level generally leads to better segmentation results (Fig. 3c). Further analysis in Linear Mixed-effect Models 204 

(LMMs) shows a 0.50% increase in DSC per 500 Hounsfield Unit (HU)/mm increase in sharpness (LMM, β = 205 

0.001%, p < 0.001). However, the DSC improvements reached a plateau beyond a certain sharpness level 206 
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(approximately 5000 HU/mm). This pattern was also observed regarding noise, where a moderate noise level led 207 

to the best segmentation performance. Larger voxel sizes in the XY plane significantly reduced segmentation 208 

performance, with a 0.16% decrease in DSC for every 0.1 mm increase in in-plane voxel size (LMM, β = -1.62%, 209 

p < 0.001). Increasing slice thickness also had a negative impact, with DSC declining by 0.10% for every 0.1 210 

mm increase in slice thickness (LMM, β = -0.955%, p < 0.001). Rotation of the mandible in all three planes 211 

resulted in negative effects on segmentation performance, with axial and sagittal rotations reducing DSC by 0.51% 212 

and 0.69% per 5-degree increase, respectively (LMM, βaxial = -0.102%, βsagittal = -0.138%, p < 0.001), while 213 

coronal rotation had no significance (p = 0.520). 214 

In univariable descriptive statistics, the AI models showed better performance on CBCT data than that of CT 215 

data (Mann-Whitney U test, p < 0.001; Fig. 3a), with a median DSC difference of 3.20% [95% CI: 2.96%, 216 

3.45%]. For the use of different CBCT devices, no significant difference was found (Mann-Whitney U test, p = 217 

0.198; Fig. 3b). Yet a marginal decline of 1.43% in median DSC [95% CI: 1.02%, 1.78%] is found in CT device 218 

C (Mann-Whitney U test, p < 0.001). However, in multivariable analysis the segmentation performance of the AI 219 

model on CT data is improved by 4.13% compared to CBCT data, (LMM, β = 4.129%, p < 0.001).  220 

Patient-related factors 221 

Figure 4 displays the relationship between patient-related factors and segmentation performance. Male 222 

patients showed slightly better segmentation results than female patients, with a 1.0% higher DSC for males 223 

(LMM, β = 0.989%, p < 0.001). Older patients showed a decrease in DSC, but this effect was not significant 224 

(LMM, β = -0.011%, p = 0.126). We used the mean value of HU across the mandibular region to assess bone 225 

density and found that lower bone density reduced segmentation performance (Fig. 4c). The number of teeth in 226 

lower dentition positively influenced segmentation performance, with each additional tooth increasing DSC by 227 

0.38% (LMM, β = 0.378%, p < 0.001). On the other hand, the presence of bone pathology (e.g. fractures, major 228 

cysts) reduced DSC by 0.71% (LMM, β = -0.708%, p < 0.05). Osteosynthesis material had the most significant 229 

negative effect, decreasing DSC by 7.90% (LMM, β = -7.90%, p < 0.001). Artifacts (e.g. metal, shadow) also 230 

negatively impacted segmentation, but showed no significant effect on DSC (LMM, β = -0.212%, p = 0.3313).  231 

Anatomical Regions 232 

Figures 5 and 6 visualize the case-wise segmentation using heatmaps. Most errors can be observed in the 233 

condyle, dentition, and part of the mandibular body. The segmentation performance of the AI model is 234 

significantly degraded in regions of impaired mandibular continuity (Case 21,65), bone pathology (Case 16,61), 235 

and osteosynthesis material (Case 17,86) (Supplementary Table 3). The segmentation results in Table 3 further 236 

demonstrate the differences in segmentation performance across Regions Of Interest (ROIs). The mandibular 237 

body performed the worst in terms of HD 95 and MASD. In terms of DSC, the condyle in CBCT had the lowest 238 

score of 78.07%. In addition, the dentition also had the lowest NSD value of 84.16%, indicating a lack of 239 

accurate boundary segmentation in this region. In summary, the mandibular body has the highest segmentation 240 

error in the distance-based metrics, whereas the condylar and dentition regions exhibit the lowest DSC and NSD, 241 

respectively. 242 

Discussion 243 

Although AI models have proven their performance, there are many open questions regarding the integration 244 

and limitations of current AI models in clinical routine as well as research. Recent qualitative research confirms 245 
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that clinicians demand concrete insights into when and why AI fails in clinical settings, suggesting the need for 246 

comprehensive socio-technical evaluations26. Based on an experimental study with 20 current state-of-the-art AI 247 

models and the analysis of imaging features, patient characteristics, and anatomical regions on segmentation 248 

results, we were able to obtain new insights and provide recommendations for optimized social-technical setting, 249 

including clinical data acquisition and the requirements for future development of AI-based segmentation. To 250 

begin, our study required the creation of a benchmark dataset, as directly using public datasets or random 251 

sampling of private cases would not have been appropriate. Public datasets may overlap with the training data of 252 

the models under evaluation, and random sampling of private cases could not ensure a balance of imaging and 253 

patient features necessary for statistical analysis. Therefore, we built our benchmark dataset based on real-world 254 

scenarios where AI models are applied to end users, and determined the required size with a sample size 255 

calculation. Previous studies have shown that resampling could simulate multiple CBCT/CT scans from the same 256 

patient in a different image reconstruction settings27. Rotational movements of the patient's head could also be 257 

simulated using resampling methods28. Hence, we have created a quasi-experiment setting by resampling 258 

original CT/CBCT scans and manual screening of patient characteristics. This method provides enough data for 259 

the LMM to reveal the underlying factors influencing the performance of AI models. 260 

Regulations on AI models 261 

Among the 20 models selected for this study, the overall segmentation performance of the commercial 262 

models that had received MDR/FDA approval was higher than that of the research models (Fig. 2d). This 263 

suggests a positive impact of regulatory policies on the commercial model development and deployment process. 264 

However, the costs associated with certifying software as a medical device could be substantial. Regardless of 265 

the type of model, monitoring post-deployment performance is a critical step in improving safety as well as the 266 

effectiveness of AI models in clinical practice29. This is also a key feature of the overall product lifecycle 267 

approach used by the FDA30. As our study demonstrates, end-users should expect degradation in the 268 

performance of current static AI models as a result of changes in imaging protocols or changes in patient 269 

populations. One possible solution is dynamic fine-tuning of deployed models. However, the changes in 270 

performance as well as risk associated with this continuous learning may cause the product's metrics to differ 271 

from those at the time of initial certification, which would pose a significant regulatory challenge31. While 272 

regulators are actively developing guidance policies for dynamic tuning models, all approved AI tools have been 273 

static up to this date32,33. Therefore, the optimization of image acquisition protocols may be a viable alternative 274 

solution on static models. Furthermore, the identification of patient characteristics and anatomical regions that 275 

cause performance declines could lead to a strategy for intervening, both in the development of AI models as 276 

well as in their application. 277 

Imaging factors and modality  278 

The first questions arise in the optimal reconstruction protocol during the acquisition of medical imaging. 279 

Our investigation of one of the most versatile human bones, the mandible, suggests several key areas affecting 280 

the quality of AI-based bone segmentation. Elevated sharpness, decreased voxel size, and ensuring standardized 281 

patient positioning can all improve AI-based segmentation to a certain degree (Fig. 3). The results are in 282 

accordance with findings from traditional segmentation algorithms. Puggelli et al.34 reconstructed CT scans of 283 

porcine tibiae with different kernels and evaluated the segmentation accuracy compared to laser scanning. The 284 

results demonstrated that sharp reconstruction kernel accuracy was higher than that of the soft kernel. The reason 285 
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for that may be because the bone-soft tissue boundary is better defined in these images. Similarly, another study 286 

based on the segmentation results on CBCT scans of an AI model of 11 dry mandibles with different voxel sizes, 287 

revealed that larger voxels (0.45 mm) resulted in significant segmentation errors compared to smaller voxels 288 

(0.15 mm) (surface scans as reference)35. In contrast, Huang et al. concluded when applying one single AI model 289 

onto 183 CT scans of 11 patients with different voxel sizes, slice thickness and simulated doses, that there is no 290 

need for a strict image resolution19. Our comprehensive analysis with 20 models, however, underlined that lower 291 

sharpness (increased blurriness) as well as larger voxel size may have a negative impact on segmentation 292 

performance. This should be considered in the reconstruction protocols when incorporating AI models. 293 

Another important factor is bone rotation during scanning (in our case the mandible). El Bachaoui et al. 294 

collected a total of 20 CBCT scans from 5 fresh cadavers at four different positions36. They concluded that the 295 

effect of sagittal rotation of the head on segmentation accuracy is clinically negligible (manual segmentation as 296 

reference). However, this study investigated a limited range of rotations in the sagittal plane only. In contrast, 297 

our study included a wide range of combined rotations in all three reference planes. Our results show that bone 298 

rotation in the axial and sagittal planes negatively affects the segmentation results (Fig. 3). This finding is 299 

probably due to the underlying distribution of the training data used by AI models. Attention should be paid to 300 

the standard positioning of the mandible, especially during CT scanning, as there is more freedom of movement 301 

for mandible on supine CT scans that lack chin fixation compared to CBCT. If a proper bone positioning cannot 302 

be achieved, post processing into a normalized bone position should be considered. 303 

Regarding the imaging modality, most of the models trained with single modal data (CBCT or CT) were also 304 

able to segment scans of the other modality. Only one model, which trained solely on CT data, was unable to do 305 

so, as it successfully extracted the skull but was unable to separate the mandible from it. Such results indicate 306 

that CBCT and CT are interchangeable in this task, likely due to their similar fundamental imaging principles. 307 

Nevertheless, AI segmentation on CBCT demonstrated higher accuracy in descriptive statistics, but the AI model 308 

was even better at segmenting the CT data in LMM analysis which took multiple factors into account. The main 309 

reason for this may be that the original voxel size of CBCT (0.268 mm in average) is smaller than that of CT 310 

(0.442 mm in average), and smaller voxels size leads to better segmentation (Fig. 7). Another reason could be 311 

the anisotropy of CT voxels, i.e., slice thickness is generally not equal to in-plane voxel size. In previous studies, 312 

this negative effect was predominantly observed in the inter-slice direction, with the main areas affected 313 

including the cranial side of the condyle, the inferior border of the mandible, and the alveolar ridge, which is also 314 

observed in our study17. In contrast, LMM considers voxel size and slice thickness as independent factors, 315 

avoiding the interference of voxel morphology on modality. In conclusion, the use of high-resolution CT scans 316 

with isotropic voxels may further improve bone segmentation results of AI models. 317 

Patient-related factors and Regions of Interests 318 

Beside image-related factors, patient-related factors may also affect segmentation accuracy. Our results 319 

showed slightly better segmentation performance in males (LMM, β = 0.99%, p < 0.001) (Fig. 4). Yet this 320 

difference is marginal, it suggests that the AI models can be readily applied to both sexes. Interestingly, the 321 

presence of teeth improved segmentation results (for each additional tooth, LMM, β = 0.38%, p < 0.001). A 322 

possible explanation is that teeth act as extra anatomical landmarks for the AI models. Lacking teethless training 323 

data could also be a reason. Although restorations and implants are typically the source of artifacts, LMM 324 

analysis considered artifacts an individual factor, allowing our study to identify the impact of teeth on 325 

segmentation outcomes. However, bone pathology and osteosynthesis materials significantly reduced accuracy. 326 
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This result aligns to that from the study of Cui et al. of one single AI model, where evaluated on an external 327 

dataset of 407 CBCT scans, missing teeth (DSC, -0.8%), malocclusion (DSC, -0.9%), and metal artifacts (DSC, -328 

2.0%) negatively affected segmentation results37.  329 

The accuracy of mandible segmentation varies in different anatomical regions (Table 3). The condyle 330 

exhibits lower accuracy, primarily due to its thin cortical bone and low density of cancellous bone, as well as the 331 

surrounding high-density cranial base structures. This results in lower contrast in the condylar region, especially 332 

in CBCT images38. This was confirmed by our LMM analysis across anatomical regions, where the segmentation 333 

performance of the condylar region in CT images is improved by 8.59% in DSC (LMM, β = 8.35%, p < 0.001) 334 

compared to CBCT images, while the improvement of the whole mandible segmentation is merely 4.1% (LMM, 335 

β = 4.13%, p < 0.001)(Fig. 7). The mandible body also exhibits a higher degree of error in segmentation, which 336 

may partially be attributed to the presence of artifacts from the crowns and brackets39. Another reason for the 337 

drop in the performance on the mandibular body is the discontinuity of the mandible, often accompanied by 338 

large osteosynthesis reconstruction plates (Fig. 5 Fig. 6). This could lead to a partial segmentation failure, which 339 

in turn severely affects the overall segmentation performance of the mandibular body. 340 

Ideally, AI segmentation models should not be sensitive to reconstruction protocols, patient factors, and 341 

anatomical regions, which are highly variable in a socio-technical system. However, due to the limitations in 342 

architecture and training data, the current models have not yet reached this goal. Nevertheless, according to our 343 

findings, the segmentation performance of the model can be improved by optimizing the imaging protocol. 344 

Simulated calculation with results from LMMs suggested that with a recommended protocol (CT scan, sharpness 345 

of about 5000 HU/mm, voxel size of 0.5 mm, and neutral bone position), an increase of 9.02% in DSC for AI 346 

segmentation can be expected, comparing to the worst combination. In terms of patient characteristics, AI 347 

segmentation on a young male with complete dentition, without artifacts, pathology, or osteosynthesis, the DSC 348 

would increase by 16.59% compared to the worst combination of features. With these two aspects into account, 349 

the difference in DSC between the cases adapted most to fitting predicted requirements of AI models in general 350 

and those least adapted would be 25%. A real pair of examples can be found in our dataset (Case 21 and Case 78, 351 

Supplementary Table 2), where the mean DSC for AI segmentation of the original volume was 71.82% and 352 

91.49%, respectively, with a difference of 19.67%. This 20% difference in DSC is substantial in terms of 353 

workload since cases with DSC above 90% require minor adjustment and those below 75% need intensive 354 

manual involvement (Figure 2a).  355 

Recommendations and Requirements 356 

To narrow this performance gap in clinical practice, collaboration between clinicians and AI developers must 357 

focus on mutual adjustments informed by real-world needs. Clinicians can optimize imaging protocols to align 358 

with current AI capabilities, while developers should prioritize the requirements that address recurring clinical 359 

challenges.  360 

For clinicians, understanding the technical limits of AI models is critical. To improve bone segmentation 361 

outcomes, we recommend using CT scans with small, isotropic voxels (0.5 mm or smaller) and high-sharpness 362 

protocols when possible. In terms of modality, clinicians should be aware of the potential performance drop in 363 

susceptible regions like condyles in CBCT. Also, ensure target bones are positioned neutrally during scans, if not 364 

possible (e.g. trauma), adjust the images to a standard orientation before segmentation. In cases with edentulous 365 

mandible, large implants, or bone pathologies, clinicians should expect lower accuracy and prepare for manual 366 

corrections. 367 
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For AI developers, the next-gen models should be stable in performance even when faced with non-ideal 368 

clinical conditions. This includes robustness to patient features like bone pathology and osteosynthesis. 369 

Considering the sparsity of specific patient group, synthetics data can be a viable option. Segmentation 370 

performance in complex anatomical regions (e.g. condyles) should be prioritized, which could be achieved 371 

through regionally weighted loss functions or adversarial training for specific structures. In addition, models 372 

should explicitly flag uncertain or low-confidence segmentation regions by heatmaps or scores to guide clinician 373 

review, particularly in high-risk cases involving bone pathologies or surgical planning. 374 

Limitation 375 

Our study recruited the largest number of AI models to date and comprehensively analyzed the socio-376 

technical factors including patient factors and imaging factors on segmentation performance. However, one 377 

limitation of the study is that we focused on bone segmentation only, which is only one but important fraction of 378 

the human anatomy. It would be interesting to see similar investigations into soft tissue segmentation (e.g. hearts, 379 

lungs and livers). This may involve analyzing the performance of AI models in various imaging modalities 380 

commonly used on soft tissue such as MRI or 3D ultrasound. The impact of factors such as tissue deformation, 381 

movement artifacts and inter-patient variability on segmentation results could be factors to be further assessed. 382 

In addition, our dataset did not include cases under the age of 18 years because they are not common cases for 383 

mandibular bone segmentation. This prevented us from fully capturing anatomical variability in all clinical 384 

situations, especially in patients who grow and develop during childhood and adolescence. 385 

Future work 386 

On our benchmark dataset, the current models still have a certain number of unsatisfying segmentation 387 

results, and clinicians need to refine them manually using various tools (Figure 2a). Integrating models with 388 

interactive tools (e.g., SAM40 and MedSAM41) could streamline this “last mile” by allowing clinicians to correct 389 

errors via intuitive prompts. This study only briefly investigated the basic architecture used by the models, and 390 

due to confidentiality reasons, we were not able to examine in detail the configuration of the training parameters 391 

of each model. As a result, the impact of these technical specifications, in addition to the black-box 392 

characteristics of AI models, on segmentation accuracy is still not fully understood. Future research should 393 

explore these factors, potentially by collaborating to configure models and data in a controlled environment for 394 

further experiments. 395 

Conclusion 396 

This multi-center study shows that the performance of AI mandible segmentation is dynamically shaped by 397 

socio-technical factors, including imaging protocols, patient-specific factors and anatomical complexity. Two 398 

pillars are essential to the success of clinical translation of AI models: clinicians should adapt their workflows to 399 

the current limitations of AI, and developers must tackle the upcoming requirements that address persistent 400 

clinical challenges. For clinical teams, this means choosing high-resolution CT protocols when possible, 401 

ensuring standardized patient positioning and rechecking AI output in cases involving bone pathology or 402 

osteosynthesis. For AI developers, the requirements for the next-gen AI segmentation models are summarized 403 

from clinical failures. Models must remain robust to common clinical variabilities like rotation. Models should 404 

further improve the accuracy of error-prone anatomical regions (e.g., condyles) and provide intuitive uncertainty 405 

feedback to guide clinical reviews. These are not standalone checklists but interconnected obligations—only 406 
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through this dual commitment can AI progress from a static algorithm and technocentric preoccupation to a 407 

trustworthy clinical ally in a socio-technical system.  408 

 409 
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Tables 453 

Table 1. AI models Summary 454 

Name Institute/Company Location Architecture 

AC-Seg9 Inzipio GmbH Aachen, Germany 3D-UNet42 
SegCBCT University Zurich Zurich, Switzerland 3D-UNet 
SKUBA CADS  Perg, Austria nnUNet43 

MandibleSegNet 
Charité University 
Medicine/ZIB 

Berlin, Germany nnUNet 

3D-JMax8 University Hospital Basel Basel, Switzerland 3D-UNet 
Mandible 1000shapes Berlin. Germany nnUNet 

JawFracNet44 Radboudumc 
Nijmegen, The 
Netherlands 

3D-UNet 

JLU-Mandible Jilin University Changchun, China U-Mamba45 
Relu Creator7 Relu BV Leuven, Belgium 3D-UNet 
MandiSeg-Swin IKIM Essen Essen, Germany SwinUNETR46 

DentalSegmentator47 
Arts et Métiers Institute of 
Technology 

Paris, France nnUNet 

nnHaN-Net48 UMIT TIROL Tirol, Austria nnUNet 
Planmeca Romexis 
Smart Lite 

Planmeca Helsinki, Finland DynUNet49 

FastJaw TESCAN Czech Republic Cascaded U-nets 
Simpleware CMF Synopsys California, USA DNN 

Materialise CMF 
segmentation model 

Materialise NV Leuven, Belgium Confidential 

KAAK  UMCG 
Groningen, The 
Netherlands 

nnUNet50 

Edge Supervison 
Segmentation50 

SJTU Shanghai, China 3D-VNet51 

AMASSS-CBCT52 
University of Michigan 
(Public) 

Michigan, USA 3D-UNETR 

MedLSAM53 OpenMedLab (Public) Shanghai, China MedSAM41, MedLAM 

Table 1. Summary of the recruited AI models.  455 
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Table 2. Performance Summary 458 

Model 
DSC (%) NSD (%) HD 95 (mm) MASD (mm) 

CT CBCT Overall CT CBCT Overall CT CBCT Overall CT CBCT Overall 

A 
90.87± 

9.19 
94.01± 

4.86 
92.44± 

7.51 
93.77± 

9.80 
94.37± 

5.55 
94.07± 

7.97 
4.05± 
20.70 

2.26± 
5.05 

3.16± 
15.09 

0.60± 
3.02 

0.29± 
0.46 

0.44± 
2.16 

B 
87.82± 

7.03 
92.11± 

5.48 
89.97± 

6.66 
89.56± 

9.84 
91.93± 

7.02 
90.75± 

8.62 
4.71± 
11.64 

3.90± 
10.74 

4.31± 
11.20 

0.64± 
1.17 

0.60± 
1.78 

0.62± 
1.50 

C 
88.60± 

7.22 
90.57± 

8.87 
89.59± 

8.15 
91.34± 

9.60 
91.90± 

9.60 
91.62± 

9.60 
7.29± 
28.00 

5.08± 
12.31 

6.18± 
21.64 

1.71± 
11.48 

0.72± 
1.99 

1.21± 
8.25 

D 
82.62± 
18.74 

89.81± 
11.81 

86.24± 
16.03 

83.40± 
20.21 

89.50± 
12.03 

86.48± 
16.87 

19.90± 
56.52 

4.68± 
9.96 

12.23± 
41.12 

3.15± 
11.08 

0.70± 
1.76 

1.91± 
7.99 

E 
88.19± 

6.92 
87.91± 
12.35 

88.05± 
10.01 

89.18± 
9.48 

85.71± 
13.66 

87.44± 
11.88 

10.23± 
33.46 

11.32± 
23.69 

10.77± 
28.98 

1.45± 
5.52 

1.77± 
4.24 

1.61± 
4.92 

F 
86.16± 

8.05 
92.37± 

6.80 
89.27± 

8.07 
88.60± 
10.81 

93.62± 
8.52 

91.11± 
10.04 

5.98± 
13.37 

3.08± 
9.73 

4.53± 
11.78 

0.78± 
1.82 

0.48± 
1.51 

0.63± 
1.68 

G 
88.57± 

4.81 
89.02± 
10.82 

88.79± 
8.37 

90.04± 
7.00 

87.57± 
10.76 

88.80± 
9.16 

6.70± 
14.40 

8.13± 
11.86 

7.41± 
13.20 

0.62± 
0.95 

0.95± 
2.41 

0.78± 
1.84 

H 
85.94± 
12.05 

88.63± 
9.26 

87.29± 
10.81 

87.80± 
13.99 

87.76± 
10.85 

87.78± 
12.50 

12.65± 
29.67 

9.47± 
17.75 

11.06± 
24.49 

2.81± 
11.15 

1.15± 
2.27 

1.98± 
8.09 

I 
86.81± 

8.61 
87.77± 
13.56 

87.29± 
11.35 

88.66± 
12.07 

88.65± 
15.19 

88.65± 
13.70 

4.68± 
11.40 

9.26± 
18.64 

6.96± 
15.59 

0.61± 
0.91 

1.32± 
3.11 

0.96± 
2.31 

J 
88.43± 

3.98 
90.22± 

4.61 
89.32± 

4.39 
90.45± 

6.78 
89.95± 

6.30 
90.20± 

6.55 
6.92± 
22.98 

5.92± 
7.42 

6.42± 
17.07 

0.74± 
2.20 

0.61± 
1.04 

0.68± 
1.72 

K 
80.92± 
18.31 

80.63± 
13.45 

80.78± 
16.06 

83.16± 
18.25 

80.64± 
12.93 

81.90± 
15.86 

16.74± 
26.51 

10.19± 
9.70 

13.47± 
20.22 

2.15± 
4.49 

1.33± 
1.35 

1.74± 
3.34 

L 
84.45± 
10.07 

85.28± 
13.85 

84.86± 
12.11 

86.58± 
12.82 

83.54± 
13.65 

85.06± 
13.32 

9.17± 
21.49 

7.70± 
13.45 

8.44± 
17.93 

1.19± 
2.62 

1.20± 
2.34 

1.20± 
2.48 

M 
85.64± 

4.10 
87.45± 

7.56 
86.55± 

6.15 
87.12± 
10.02 

86.13± 
9.80 

86.63± 
9.92 

3.87± 
9.59 

5.18± 
12.65 

4.52± 
11.24 

0.61± 
0.69 

1.02± 
3.22 

0.82± 
2.34 

N 
82.02± 
15.89 

49.38± 
34.36 

69.13± 
29.55 

83.12± 
16.03 

47.03± 
32.13 

68.87± 
29.56 

17.48± 
61.10 

52.16± 
37.07 

33.29± 
54.35 

2.90± 
13.85 

16.60± 
16.09 

9.14± 
16.40 

O 
80.74± 

8.61 
83.61± 

9.50 
82.17± 

9.17 
80.76± 
12.62 

82.72± 
10.81 

81.74± 
11.79 

37.07± 
47.93 

10.63± 
16.60 

23.88± 
38.24 

5.12± 
7.57 

1.41± 
2.83 

3.27± 
6.01 

P 
79.72± 
11.64 

82.02± 
10.83 

80.87± 
11.30 

83.31± 
10.90 

78.50± 
9.30 

80.91± 
10.41 

6.48± 
15.68 

7.38± 
15.00 

6.93± 
15.34 

0.86± 
1.95 

1.09± 
2.49 

0.98± 
2.24 

Q 
78.11± 
16.30 

46.39± 
27.64 

62.59± 
27.58 

79.74± 
15.64 

47.31± 
24.90 

63.87± 
26.28 

15.75± 
26.39 

32.67± 
24.16 

24.05± 
26.69 

2.09± 
4.19 

6.43± 
6.69 

4.22± 
5.96 

R 
81.26± 

8.63 
80.97± 
10.36 

81.12± 
9.53 

84.55± 
8.06 

79.54± 
8.05 

82.05± 
8.43 

5.83± 
16.56 

4.53± 
4.46 

5.18± 
12.14 

0.75± 
2.69 

0.64± 
0.66 

0.69± 
1.96 

S 
50.71± 
30.98 

NA 
50.71± 
30.98 

50.78± 
30.43 

NA 
50.78± 
30.43 

105.38± 
130.33 

NA 
105.38± 
130.33 

21.47± 
29.62 

NA 
21.47± 
29.62 

T 
47.23± 
25.31 

46.52± 
20.26 

46.87± 
22.87 

36.49± 
21.60 

34.73± 
13.85 

35.60± 
18.11 

64.49± 
23.82 

34.85± 
5.88 

49.53± 
22.76 

13.58± 
9.00 

7.99± 
4.13 

10.76± 
7.52 

Overall 
81.38± 
17.57 

81.97± 
20.02 

81.66± 
18.80 

82.57± 
19.64 

80.74± 
20.96 

81.69± 
20.31 

17.97± 
46.97 

11.63± 
19.88 

14.89± 
36.57 

3.13± 
10.34 

2.31± 
5.70 

2.73± 
8.42 

Table 2. Segmentation performance (mean ± sd) of AI models on the whole mandible. Best performances were 459 
marked in blue. Model S failed to segment CBCT volumes. Models anonymized by descending order of number 460 
of segmentations with DSC > 90%.  461 

 462 

 463 

 464 
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Table 3. Anatomical Region Summary 466 

ROI 
DSC (%) NSD (%) HD 95 (mm) MASD (mm) 

CT CBCT Overall CT CBCT Overall CT CBCT Overall CT CBCT Overall 

Condyle 
82.26 ± 
19.19 

78.07 ± 
23.54 

80.26 ± 
21.48 

90.46 ± 
17.37 

82.24 ± 
22.10 

86.53 ± 
20.19 

2.24 ± 
4.31 

2.71 ± 
2.92 

2.47 ± 
3.72 

0.43 ± 
0.89 

0.62 ± 
0.84 

0.52 ± 
0.87 

Dentition 80.15 ± 
19.31 

83.13 ± 
18.10 

81.60 ± 
18.79 

85.41 ± 
18.94 

82.83 ± 
18.58 

84.16 ± 
18.81 

7.99 ± 
26.86 

5.42 ± 
9.56 

6.74 ± 
20.41 

1.51 ± 
6.01 

1.11 ± 
2.81 

1.32 ± 
4.74 

IAN 
Foramen 

82.19 ± 
14.45 

85.58 ± 
13.28 

83.82 ± 
14.00 

95.94 ± 
9.19 

96.46 ± 
8.77 

96.19 ± 
8.99 

1.09 ± 
1.02 

0.93 ± 
0.52 

1.01 ± 
0.82 

0.12 ± 
0.23 

0.12 ± 
0.15 

0.12 ± 
0.19 

Inferior 
Border 

84.64 ± 
16.84 

85.31 ± 
18.81 

84.97 ± 
17.83 

87.19 ± 
17.44 

84.08 ± 
19.48 

85.66 ± 
18.53 

10.11 ± 
35.85 

8.24 ± 
15.90 

9.19 ± 
27.88 

1.80 ± 
7.74 

1.54 ± 
4.02 

1.67 ± 
6.19 

Mandible 
Body 

80.51 ± 
18.36 

82.37 ± 
21.13 

81.41 ± 
19.78 

85.02 ± 
20.49 

85.39 ± 
21.93 

85.20 ± 
21.20 

21.67 ± 
60.00 

10.23 ± 
20.96 

16.10 ± 
45.76 

4.30 ± 
14.22 

2.41 ± 
6.67 

3.38 ± 
11.24 

Whole 
Mandible 

81.38 ± 
17.57 

81.97 ± 
20.02 

81.66 ± 
18.80 

82.57 ± 
19.64 

80.74 ± 
20.96 

81.69 ± 
20.31 

17.97 ± 
46.97 

11.63 ± 
19.88 

14.89 ± 
36.57 

3.13 ± 
10.34 

2.31 ± 
5.70 

2.73 ± 
8.42 

Table 3. Performance of AI models (mean ± sd) on 5 anatomical regions and the whole mandible. Worst 467 
performances were marked in red. 468 

 469 
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Figure 1 - Workflow 472 

 473 

Figure 1. Workflow of the study. Created with BioRender.  474 
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Figure 2 - AI Models 475 

 476 

Figure 2. Model related factors and segmentation performance (a) Ranking of models based on segmentation 477 
quality. Decrease by number of good cases (DSC ≥ 0.9) (b) Distribution of model performance in CT and CBCT 478 
subsets based on mean DSC (c) Impact of training data on overall segmentation performance (d) Impact of 479 
model type (e) Impact of the size of training dataset. Low: 0-150 cases; Medium: 150-300 cases; High: 300+ 480 
cases.  481 
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Figure 3 - Image Quality 482 

 483 

Figure 3. Image quality related factors and segmentation performance measured in DSC (a) distribution of 484 
segmentation performance in CBCT and CT scans (b) segmentation performance in five devices used in the 485 
study (c) relationship between image sharpness and segmentation performance (d) the effect of image noise 486 
image noise and segmentation performance (e) relationship between slice thickness and segmentation 487 
performance (f) the impact of voxel size on segmentation performance (g) ~ (i) the effect of bone rotation on 488 
segmentation performance. Colored hexagonal bins represent the distribution of data points. Darker colors 489 
indicate higher data density, while brighter colors indicate lower data density. 490 
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Figure 4 - Patient Characteristics 491 

 492 

Figure 4. Patient related factors and segmentation performance (a)Comparison of between female and male 493 
patients (b) relationship between age and segmentation performance (c)The effect of Hounsfield Unit (HU) 494 
intensity on segmentation performance (d)(e) The impact of dentition status and teeth count on segmentation 495 
performance (f) Comparison of segmentation performance between cases with and without metal artifacts (g) 496 
Influence of bone pathology on segmentation performance (h) The effect of osteosynthesis on segmentation 497 
performance  498 
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Figure 5 - CBCT  499 

 500 

Figure 5. Heatmaps showing the average surface distance between AI segmentation results and the ground truths 501 
of CBCT scans. These segmentations were performed on the original scan and the 9 resample variants by 19 502 
models (failed in model S), resulting in around 190 segmentations per case. Cases arranged in descending order 503 
of overall mean DSC.  504 
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Figure 6 - CT  505 

 506 

Figure 6. Heatmaps showing the average surface distance between AI segmentation results and the ground truths 507 
of CBCT scans. These segmentations were performed on the original scan and the 9 resample variants by 20 508 
models, resulting in around 200 segmentations per case. Cases arranged in descending order of overall mean 509 
DSC.  510 
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Figure 7 - LMMs Summary in DSC 511 

 512 

Figure 7. LMMs fitted on evaluation results in DSC% of five ROIs and the whole mandible. Factor considered 513 
significant when p<0.05.   514 
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Supplementary 515 

Supplementary Table 1. Demographic and image features of the original scans 516 

Patient features CBCT (n=50) CT (n=50) Total (n=100) 

Age    

   Mean (SD) 46.240 (24.090) 50.700 (20.076) 48.470 (22.175) 

   Range 19 - 91 22 - 85 19 - 91 

Gender    

   f 25 (50.0%) 25 (50.0%) 50 (50.0%) 

   m 25 (50.0%) 25 (50.0%) 50 (50.0%) 

Teeth    

   Full 20 (40.0%) 14 (28.0%) 34 (34.0%) 

   None 10 (20.0%) 12 (24.0%) 22 (22.0%) 

   Partial 20 (40.0%) 24 (48.0%) 44 (44.0%) 

Artifacts    

   No 25 (50.0%) 27 (54.0%) 52 (52.0%) 

   Yes 25 (50.0%) 23 (46.0%) 48 (48.0%) 

Bone Pathology    

   No 32 (64.0%) 28 (56.0%) 60 (60.0%) 

   Yes 18 (36.0%) 22 (44.0%) 40 (40.0%) 

Osteosynthesis    

   No 40 (80.0%) 40 (80.0%) 80 (80.0%) 

   Yes 10 (20.0%) 10 (20.0%) 20 (20.0%) 

Imaging features CBCT (N=50) CT (N=50) Total (N=100) 

Voxel Size    

   Mean (SD) 0.268 (0.019) 0.442 (0.075) 0.355 (0.103) 

   Range 0.250 - 0.287 0.289 - 0.662 0.250 - 0.662 

Slice Thickness    

   Mean (SD) 0.268 (0.019) 0.706 (0.042) 0.487 (0.222) 

   Range 0.250 - 0.287 0.700 - 1.000 0.250 - 1.000 

Device Name    

   A 25 (50.0%) - 25 (25.0%) 

   B 25 (50.0%) - 25 (25.0%) 

   C - 22 (44.0%) 22 (22.0%) 

     D - 14 (28.0%) 14 (14.0%) 

     E - 14 (28.0%) 14 (14.0%) 

Supplementary Table 1. Demographic and image characteristics of the original scans  517 
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Supplementary Table 2. Comparison between best and worst Case  518 

Factors Case 21 Case 78 Factor Unit Beta(%) Effect(%) 

Gender F M - 0.99 0.99 

Age* 65-70 20-25 5 years 0.06 0.528 

Modality CBCT CT - 0.38 6.08 

Teeth Count 0 16 1 tooth 0.21 0.21 

Artifacts YES NO - 0.70 0.7 

Bone Pathology YES NO - 7.89 7.89 

Osteosynthesis YES NO - 4.13 4.13 

Sharpness 4010.43 5326.17 500 HU/mm 0.50 1.32 

Voxel Size 0.29 0.45 0.10 mm 0.16 -0.26 

Slice Thickness 0.29 0.70 0.10 mm 0.09 -0.37 

Axial Rotation 1.14 -4.47 5.00° 0.51 -0.34 

Coronal Rotation -2.31 -0.17 5.00° 0.10 0.04 

Sagittal Rotation -13.82 12.97 5.00° 0.69 0.12 

DSC%_Original 71.82 91.49 
   

Real_diff (DSC %)  
   

19.67 

Model_diff (DSC %)  
   

21.04 

Supplementary Table 2. Sample cases showing the best combination of imaging and patient features verses the 519 
worst combination. A decline of 19.67% in DSC was observed. *To avoid identification, age ranges were used. 520 
The age difference between the two cases was 44 years. 521 

  522 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.11.25329022doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.11.25329022


PREPRINT  26 of 34 

2025 

Supplementary Table 3. Case-wise summary  523 

Attached: Supplementary Table 3-CASE_RANKING.xlsx 524 

Supplementary Table 3. Average performance of the 20 AI segmentation models on the 100 original cases used 525 
in the study as well as their resampled versions for each case. The order of the cases is sorted by segmentation 526 
performance (DSC, HD95, MASD, NSD) from best to worst. 527 

  528 
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Supplementary Table 4. Resampling Factors 529 

Attached: Supplementary Table 4-CASES_RESAMPLED_FINAL.xlsx 530 

Supplementary Table 4. Resampling factors used for all 1000 volumes. The first 100 records are the original 531 
volumes. VOZ is the magnification of slice thickness and VXY is the magnification of in-plane voxel size. 532 
ROTX, ROTY, and ROTZ correspond to sagittal, coronal, and axial rotations, respectively. The columns 533 
SHARNESS and NOISE are measurements of sharpness and noise for that volume. See the online study protocol 534 
for more details in resampling. 535 
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Supplementary Figure 1. Distribution of imaging features in the final dataset537 

 538 

Supplementary Figure 1. Distribution of imaging features of the final dataset. a,b show the sharpness and noise 539 
distributions of the public dataset, the original scans, and the final dataset obtained from resampling, respectively. 540 
c and g present the overall voxel size and slice thickness of the final dataset. The final thickness of the CT is not 541 
more than 3 mm, and the CBCT voxels remain isotropic after scaling. d-f describe the distribution of the patient's 542 
mandible rotation angles in the final dataset. By adjusting the rotation parameters, the original minus mean value 543 
in the sagittal plane due to de-identified cropping have been compensated to approximately zero. h-i are Q-Q 544 
plots of the head rotation angle in the three planes, which show that the rotation angle variables are all close to a 545 
normal distribution. 546 
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Supplementary Figure 2. LMMs Summary in NSD 547 

 548 

Supplementary Figure 2. LMMs fitted on evaluation results in NSD% of five ROIs and the whole mandible. 549 
Condyles are more affected by modality than in DSC metrics. Factor considered significant when p<0.05.  550 
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Supplementary Figure 3. LMMs Summary in MASD 551 

 552 

 553 

Supplementary Figure 3. LMMs fitted on evaluation results in MASD (mm) of five ROIs and the whole 554 
mandible. Factor considered significant when p<0.05.   555 
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Supplementary Figure 4. LMMs Summary in HD95 556 

 557 

Supplementary Figure 4. LMMs fitted on evaluation results in HD95 (mm) of five ROIs and the whole 558 
mandible. Factor considered significant when p<0.05.  559 
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